Multichoice questions - Answers

- 1. What is the oxidising agent in the unbalanced equation? $I^{-}(aq) + IO_{3}^{-}(aq) + H_{3}O^{+}(aq) + HSO_{4}^{-}(aq)$ $I_{2}(aq) + SO_{4}^{2-}(aq) + H_{2}O(l)$
 - A. $I^{-}(aq)$ B. $IO_{3}^{-}(aq)$ C. $H_{3}O^{+}(aq)$ D. $HSO_{4}^{-}(aq)$ E. $I_{2}(aq)$
- 2. Oxalate ions $(C_2O_4^{2-}$

- 9. Which kind of attractive forces are likely to be holding particles together in a substance that melts at 681°C and that conducts electricity when molten but not when solid?
 - A. Ionic bonding
 - B. Metallic bonding
 - C. Dipole-dipole interactions
 - D. Network covalent bonding
 - E. Covalent molecular bonding
- 10. At room temperature, fluorine is a gas (boiling point -188 °C), while bromine is a liquid (boiling point +59 °C). Which one of the following best explains the difference in the physical states of these two halogens?
 - A. The covalent bonds in bromine are more polar.
 - B. The covalent bonds in bromine are stronger.
 - C. The covalent bonds in bromine are weaker.
 - D. The intermolecular forces in bromine are stronger.

	1	2	3
A	tertiary	primary	secondary
В	tertiary	secondary	primary
С	tertiary	tertiary	secondary
D	secondary	primary	secondary
Е	secondary	tertiary	secondary

18. Methyl-t-butyl ether, C₅H₁₂O, can be added to gasoline to promote cleaner burning. How many moles of oxygen gas, O₂, are required to burn 1.0 mol of this compound completely to form carbon dioxide and water?

$\mathbf{A}_{\mathbf{A}}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}}_{\mathbf{A}_{\mathbf{A}}_{\mathbf{A}}_{\mathbf{A}}_{\mathbf{A}}}}}}}}}}$	A. 9.5 mol	B. 8.0 mol	C. 7.5 mol	D. 6.0 mol	E. 4.5 mol
--	------------	------------	------------	------------	------------

19. A hydrocarbon X of molecular formula C₆H₁₄ was allowed to react with limited chlorine gas in the presence of light. The resulting mixture produced only two monochloroalkane

27. Which of the alcohols below would give a carboxylic acid when reacted with $K_2 C r_2 O_7/H^+$?

A. **B.** C.

D.

- 35. For the reaction $X \rightleftharpoons Y$, an initial concentration of 1.0 mol L⁻¹ X is allowed to come to equilibrium. If K = 10, what is the equilibrium concentration of Y?
 - A. $0.10 \text{ mol } L^{-1}$ B. $0.50 \text{ mol } L^{-1}$ C. $0.91 \text{ mol } L^{-1}$ D. $1.1 \text{ mol } L^{-1}$ E. $10 \text{ mol } L^{-1}$
- 36. The C=O double bond has a bond length of 0.122 nm and a bond energy of about 740 kJ mol⁻¹ in some organic compounds. Which of the following pairs of figures is most likely to be correct for a C O single bond?

	Bond length, nm	Bond energy, kJ mol ⁻¹
А	0.113	335
В	0.113	1080
С	0.116	805
D	<mark>0.143</mark>	<mark>360</mark>
E	0.143	1080

37. The ionic-product constant for water, K_w , at 45 °C is 4.0 x 10⁻¹⁴. What is the pH of pure water at this temperature?

A. 6.7	B. 7.0	C. 7.3	D. 8.5	E. 13.4
--------	--------	--------	--------	---------

- 38. What is the pH of a 0.025 mol L⁻¹ solution of KOH?
 - A. 1.60 B. 3.69 C. 7.00 D. 10.31 E. 12.40
- 39. What is the conjugate acid of HPO_4^{2-2} ?
 - A. $H_3PO_4(aq)$ B. $H_2PO_4^-(aq)$ C. $H_3O^+(aq)$ D. $H^+(aq)$

43.

50. Bob dissolved 4.021 g of NaOH in water and made up the solution to 1 litre with water. He then pipetted 10.00 mL of this solution into a flask and titrated it with 0.0500 mol L⁻¹ HCl solution from a burette. A volume of 20.42 mL of acid had been used at the endpoint. Bob's teacher deduced that:

A.