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Build. Fast computation for deciding compatibility is essential if one is to make



Introduction

Supertree methods are a fundamental and practical way of inferring phylogenies. Generally
speaking, these methods amalgamate a collection of “source” trees on overlapping subsets
of taxa into a single parent tree that contains the taxa of all of the source trees. This parent
tree is called a supertree. This approach to constructing evolutionary trees is particularly
appealing because it allows the inference of an evolutionary scenario from a combination
of analyses differing in the set of taxa they encompass as well as in the primary data
from which they were conducted (for example, molecular or mo



leaf-labelled trees as input and decides whether or not P is compatible, in which case it
returns a leaf-labelled supertree that displays P. That is, the supertree preserves all of
the relative groupings of taxa present in the source trees. For a collection of nested-taxa
trees, if a supertree preserves all ancestral relationships as well as all groupings of taxa,
then the supertree is said to ancestrally display this collection and the collection is said
to be ancestrally compatible. These concepts are formally defined in the next section.
However, we make a comment here on the way in which ancestor is used in this paper: by
writing that a taxon t is an ancestor of a taxon t′, we mean that t is either a hypothetical
ancestral taxon of t′ or that t is the name of a taxonomic grouping containing t′, so that
node labelled t is ancestral to the node labelled t′. The algorithm AncestralBuild
takes a collection P of nested-taxa trees as input and outputs a supertree that ancestrally
displays P if such a supertree exists, otherwise it states that the collection is not ancestrally
compatible. Though designed to handle trees containing taxa at both internal nodes and
leaves, AncestralBuild also accepts collections of source trees that have taxa only at the
leaves, because leaf-labelled trees are a special case of nested-taxa trees. In that particular
case, AncestralBuild decides the compatibility of the source trees in the usual sense.
Consequently, it does indeed generalize Build.

AncestralBuild has the desirable property to give an exact answer in polynomial-
time (Daniel and Semple, 2004). However, there can be three objections to its use. First,
for incompatible phylogenies to be combined, an all-or-nothing algorithm, that is just stat-
ing the incompatibility when it arises, is not desirable. Second, even for the easiest case of
source trees that are all fully-resolved and have taxa only at the leaves, the running time
of the version of AncestralBuild stated in Daniel and Semple (2004) is O(t2n3), where
t is the number of source trees and n is the number of taxa. Despite being polynomial,
this running time makes AncestralBuild



basic property that one would always like is that of consistency; that is, if the source trees
carry no conflicting information, then the supertree returned by the method displays each
of the source trees. Because the property of consistency is such a compelling property,
many general supertree methods dealing with leaf-labelled trees (respectively, nested-taxa
trees) are likely either to have Build (respectively, AncestralBuild) as a subroutine
or to be a variant of Build (respectively, AncestralBuild). Indeed, this is already
the case for some general methods: both MinCutSupertree (Semple and Steel, 2000)
method and its modified version (Page, 2002) are variants of Build and, more recently,
Daniel and Semple (2005) describe a class of general supertree methods for nested-taxa
source trees that is a variant of AncestralBuild. (This class and more particularly
the underlying general supertree method NestedSupertree is described further in the
last section.) Moreover, these all-or-nothing algorithms can be repeatedly used in simple
schemes to extract compatible parts out of a collection of incompatible source trees. We
highlight two examples of such schemes in the discussion part of this paper.

Reasonable running time. Given the amount of information in current tree databases,
it is not unreasonable to try to amalgamate hundreds of trees that collectively contain thou-
sands of taxa and, consequently, fast algorithms are essential. To deal with fully-resolved
(i.e., binary) leaf-labelled trees, Henzinger et al. (1999) proposed a fast implementation

of Build that runs in O(mn
1

2 ) time, where m is the total sum of the number of nodes in
each of the source trees and n (mn
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Figure 1: A compatible collection P of rooted semi-labelled trees.

et al. (2005).

Preliminaries

In this section, we describe some concepts that are frequently used in the paper. For
further details, we refer the interested reader to Semple and Steel (2003).

Phylogenies. The degree of a node v in a graph (or, in particular, a tree) is the number of
edges incident with v. We denote the degree of v by d(v). Essentially, a rooted phylogenetic
X-tree is a rooted tree whose leaves are labelled with the elements of a set X of taxa. We



1. We will often write a rooted semi-labelled X-tree for a rooted semi-labelled tree on X.

2. Observe that rooted phylogenetic trees are special types of rooted semi-labelled trees.

3. To simplify matters and because we see no practical reason for nodes in the source trees
to be assigned more than one taxa of X, we will assume throughout the paper that
all rooted semi-labelled trees that are source trees are singularly labelled. However, we
note that the upgrade of the results in this paper to non-singular rooted semi-labelled
trees is straightforward. Note that this remark about singular labelling does not apply
to the output tree, where it is quite possible that some nodes are labelled with more
than one taxa. For instance, a node joining human and chimp on a source tree that
contains no other mammals could be equally labelled as anything from “hominoid” to
“primate” to “mammal”. This multiple listing of a node then becomes very important
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directed into v and the outdegree of v is the number of arcs directed out of v





with the cluster L(P ′) and successively breaking it down into disjoint subclusters. The
way in which the clusters are broken up is decided by the descendancy graph which itself
is successively broken into node induced subgraphs. The algorithm either completes the
construction of such a tree or returns not ancestrally compatible if at some iteration the
associated node induced subgraph of the descendancy graph has no nodes which have
indegree zero and no incident edges.

Algorithm: AncestralBuild(P)
Input: A collection P of rooted semi-labelled trees on X.

Output: A rooted semi-labelled tree T that ancestrally displays P or the statement P is not

ancestrally compatible.

1. Construct a collection P ′ of rooted fully-labelled trees from P by adding distinct new labels
to the unlabelled nodes in the trees of the collection.

2. Construct the descendancy graph D(P ′) of P ′.

3. Call the subroutine Descendant(D(P ′)).

4. If Descendant returns no possible labelling, then return P is not ancestrally compatible.
Otherwise, return the semi-labelled tree T ′ returned by Descendant with the added labels
removed.
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Figure 5: The rooted semi-labelled tree returned by Descendant as described in Exam-
ple 2.

Remark.

1. With respect to descendancy, the added labels act as necessary “place holders” for
unlabelled nodes.

2. The recursive calls performed at Step 4 in Descendant consider disjoint node induced
subgraphs so that the processes applied to these subgraphs in subsequent iterations are
independent from one subgraph to another.

Example 2 As an example of AncestralBuild applied to a collection of rooted semi-
labelled trees, consider the collection P of trees shown in Figure 1. Suppose that Step 1
constructs the collection P ′ of rooted fully-labelled trees shown in Figure 3. Now Step 2
builds the descendancy graph D(P ′) as shown in Figure 4 . On the first iteration of De-
scendant



removes only one node in D(P), in which case the subroutine is executed O(m) times.
The computation time is dominated by the cost of Steps 3(b) and 3(c) in the subroutine.
Finding the connected arc components of a digraph is linear in the number of its nodes and
arcs. Thus, assuming that in the worst case only a constant number of edges are removed
with each node, an execution of Step 3(b) can require up to O(tn2) time to process the
restriction of D(P) it is considering. Because of the m executions of the subroutine, this
leads to an overall running time of O(mtn2) for Step 3(b). Finding edges across different
arc components in Step 3(c) can necessitate at worst to examine the O(tn2) edges of the
graph. This leads to an overall running time of O(mtn2





For the proof of (ii), suppose that AncestralBuild (using the restricted descendancy
graph) outputs a rooted semi-labelled tree T ′. We show that T ′ ancestrally displays P.
Let T1 be an element of P. By Lemma 2.1 (Bordewich et al., 2005), it suffices to show, for
all a, b ∈ L(T1) that (I) if a is a descendant label of b in T1, then a is a descendant label of
b in T ′, and (II) if a and b are non-comparable in T1, then a and b are non-comparable in
T ′.

The argument for (I) is very similar to the corresponding argument in the proof of
Theorem 4.1(ii) (Daniel and Semple, 2004), and so we omit it. To show (II), suppose that
a and b are not comparable in T1. Assume that T1 = (T1; φ1). Let v be the node in T1 that
is the most recent common ancestor of φ1(a) and φ1(b). By the construction of D∗(P),
there is a pair of children, c and d say, of the label labelling v in T1 such that c and d are
joined by an edge, and c is an ancestor label of a, and d is an ancestor label of b. Since we
eventually output a tree, this edge is eventually deleted, but not until c and d, and hence
a and b, are in separate arc components of some restriction of D∗(P). It now follows that
a and b are not comparable in T ′. 2

Remark. Let P be a collection of rooted semi-labelled trees with |P| = t and |L(P)| = n,
and let P ′ be a collection of fully-labelled trees that is obtained from P by adding distinct
new labels. Let m =

∑

T ∈P
|T |. Then the mixed graph D∗(P ′) contains O(m) nodes and

arcs. However, the number e of edges in D∗(P ′) is a function of the degree of the nodes in
the source trees. In particular, D∗(P ′) contains

O
(

∑

T









2. Although deleting the elements in S0 and their incident edges in D∗(P ′) has the potential
to create arc components A1, A2, . . . , Ak, deleting the elements in S0 ∩X in C(P ′) will
not create any blue components. This is because the sibling edges corresponding to
the elements in S0 are still coloured blue in the resulting subgraph of C(P ′). However,
Step 3′(a)(iii) colours these sibling edges red and it is this recolouring which reestablishes
the correspondence described in Step 3′(b).

3. The fact that the arc components of D∗(P) correspond to the blue components of
C(P ′)\(S0 ∩X) as stated in Step 3′(b) is established in Lemma 12.

4. Referring to Step 3′(c) of Descendant∗, the set of red edges that are deleted is a union



(i)





Proof. Let e′ be the initial number of edges in C(P ′). As stated above, computing
the blue components of C(P ′) over all executions of Step 3′(b) necessitates O(e′
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Figure 8: The rooted phylogenetic tree T1.
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inferred from craniodental morphological data (Masters and Brothers, 2002, Fig. 6.a). This
tree resolves the first trifurcation mentioned above. As it is the strict consensus of the two
most parsimonious trees, this tree also contains multifurcations. More precisely, the two
observed trifurcations respectively concern the placement of two Galagoides species and of
two Galago species.

The third and fourth source trees (c) and (d) have been inferred from mtDNA sequences
combined from the control region homologous with the hypervariable region 1 in humans,
COII and cytochrome b (Yoder et al., 2000, Fig. 2 and Fig. 3). The third tree (c) contains
18 species and subspecies of Microcebus and Eulemur. The fourth tree (d) contains 40
individuals of the Microcebus genus arranged in 9 identified species.

Internal labels of trees (b), (c), and (d) correspond to those displayed in the origi-
nal figures, while those in tree (a) were added manually to demonstrate the ability of
AncestralBuild∗ to deal accurately with many labels, located at the same or different
levels in the trees. The four detailed source trees are ancestrally compatible and Figure 11
shows the supertree resulting from the application of AncestralBuild∗ to this collec-
tion. The obtained phylogeny is one of the largest produced for the strepsirrhines, spanning
approximately 100 taxa on a number of taxonomic levels, from order to individuals. The
source trees used in this example as well as the final supertree are available online from
http://www.systematicbiology.org.

Discussion

AncestralBuild∗ does not take primary data as input, but rather source trees inferred





Integration of AncestralBuild∗ in a general supertree method

As stated in the introduction, consistency is an attractive property for any supertree
method. Thus, in constructing a general supertree method, deciding compatibility is an
integral part of the method. Currently, it seems that the only general supertree methods for
rooted semi-labelled trees is given in Daniel and Semple (2005). In this paper, the authors
describe a general supertree method that allows for the possibility of variants. This method,
called NestedSupertree, extends AncestralBuild, and thus AncestralBuild∗. If
the source trees are compatible, then it outputs a supertree that ancestrally displays each
of these trees. On the other hand, if the source trees are not compatible, then at some
iteration there are no nodes that have indegree zero and no incident edges. By making
an appropriate choice of nodes to delete, NestedSupertree, or more particularly one of
its variants, resolves this and continues on, eventually returning a supertree with several
desirable features including the following:

(i) ancestrally displaying every rooted binary semi-labelled trees that is ancestrally dis-
played by each of the source trees;

(ii) independent of the order in which the source trees are listed.

We also remark that NestedSupertree runs in polynomial time and allows for the source
trees to be weighted. Such weights, irrelevant for deciding compatiblity (and thus ignored
by AncestralBuild), can really help to arbitrate the conflicts between incompatible
source trees.

The progress made in this paper on the running time of AncestralBuild improves
the practicality of general supertree methods for nested taxa such as NestedSupertree.

Repeated use of AncestralBuild∗ in the production of a supertree

Despite the exactness AncestralBuild∗, it can still be used to build a supertree from
incompatible source trees. Two ways are highlighted below.

• Finding a subset of the source trees that are compatible. Given an incom-
patible collection P of source trees, finding a maximum-sized subset of trees in P
that are compatible is an NP-hard task (Bryant, 1997). However, heuristic methods
can be easily implemented: (i) rank all trees in P according to their size, or to some
confidence value on the trees (



already in P ′, which is checked by AncestralBuild∗. At the end of the process,
P ′ is a subset of compatible source trees, a supertree of which is provided by the
final call to AncestralBuild∗.

• Finding parts of the source trees that are compatible. Usually, source trees
result from an extensive analysis of primary data and their clades are provided with
associated confidence values, such as bootstrap values or bayesian posterior proba-
bilities. As a first approximation, we may assume that these confidence values are
representative in some sense of the correctness of the corresponding clades (see e.g.
Berry and Gascuel (1996) for a discussion). Thus, when source trees are incompat-
ible, a reasonable option is to first put into question the clades of the source trees
that display the least support from the data. This suggests an intuitive and simple
scheme to remove conflicts from the source trees by collapsing some of the clades
from consideration: Let O be the list of support values for clades of the source trees,
sorted by increasing order of confidence. Note that a clade appearing in different
trees with different confidence values can be accounted for by resorting to suitable
weighting schemes. Collapse clades of the source trees whose support value is equal
to the first value of O and remove that value from the list. Then iterate until the
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ancestor labels. Let T1 ∈ P
′, and suppose that a, b ∈ L(T1) ∩X such that a and b are not

comparable in T1. If ` ∈ L(T1) is an ancestor label of both a and b in T1, then there is a
path in C(P ′) from a to b in which all nodes on this path are descendant labels of ` in T1.

Proof. Without loss of generality, we may assume that ` labels the root of T1. Further-
more, since for any element z ∈ L(T1) ∩X, there is a path in C(P ′) from z to any of its
descendant labels in L(T1) ∩X, we may also assume that L(T1) ∩X bijectively labels the
leaves of T1. This implies that T1 has no degree-two nodes.

We prove the lemma by showing that, for any pair of elements x and y in L(T1) ∩X,
there is a path joining this pair in C(P ′) with the property that all nodes on this path are
in L1



(I) After Step 3′(a) is completed, if S1,S2, . . . ,Sk are the node sets of the arc components
of Di\S0, then S1 ∩X,S2 ∩X, . . . ,Sk ∩X are the node sets of the blue components
of Ci\(S0 ∩X).

(II) Before Step 3′(c) is performed, an edge e = {`, `′} of Di\S0 joins two arc components
if and only if, for each sibling edge set of e, each edge in this set is coloured red and
joins two blue components in Ci\(S0 ∩X) with the labels in ` in one blue component
and the labels in `′ in the other blue component.

(III) After Step 3′



that c and d are non-comparable in T1. By considering the directions of the arcs in the
path of directed edges between c and d, it is easily seen that one node on this path, ` say,
is an ancestor label of both c and d in T1. Since the node ` appears in Di\S0, it follows
by the fact that V (Di) ∩ X = V (Ci) that each of its descendant labels in L(T1) ∩X are
in Ci\(S0 ∩ X). From Lemma 11, we now deduce that there is a path of blue edges in
Ci\(S0 ∩X) from c to d, and so c and d are in the same blue component of Ci\(S0 ∩X).
This contradiction completes the proof of (I).



Appendix 2: Implementation Details

We give here a description of AncestralBuild∗ that is more tuned towards implemen-



A is the dynamic connectivity algorithm supporting deletion updates and connectivity
queries.





3′(b) foreach edge {a, b} ∈ Lred do

perform a deletion update in A for the edge {a, b};



4 foreach component Ci in Lnext
C ∪ {Cn0

} do

resi ← Descendant∗ (C(P ′), D∗(P ′), i);
if resi returns no possible labelling then return no possible labelling

return the tree obtained by grafting all resi as child subtrees of a root node labelled
by nodes in Sn0

∩X.

Note that, in the case where P ′ is compatible, Step 4 issues a recursive call for each
new component created by the on-going execution of Descendant∗, as well as for the
component Cn0

. Indeed, this latter component still contains nodes. Note that some of
these nodes that were not in Sn0

at the beginning of the on-going call, can now be in
this set because initial nodes of this set and some edges have been removed from this arc
component.
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